:: Free article content
Authors: Maximum article exposure. Publishers: Reprintable article content.
Featured Articles
Recently Added Articles
Most Viewed Articles
Article Comments
Advanced Article Search
Submit Article
Check Article Status
Author TOS
RSS Article Feeds
Terms of Service

Understanding Solar Hot Water Systems – The Drain Back Design
Home Home Home Improvement
By: Dr. Ben Gravely Email Article
Word Count: 536 Digg it | it | Google it | StumbleUpon it


There are many types of solar hot water systems – pressurized closed loop, pressurized open loop, drain back, thermosyphon, and variations called direct and indirect, referring to the placement of the heat exchanger. There are variations among the variations. The two dominant types today are the pressurized glycol system and the drain back system.

One version of the drain back system has been in continuous operation since the late ‘70s. It has the following six fundamental characteristics:

1) It is scalable to any size from the smallest residential system to the largest commercial system.
2) It works in any climate and will not freeze or boil.
3) It is the most efficient for two reasons. It uses plain water, which has the highest heat transfer characteristics, and it does not have a heat exchanger between the tank and the collectors. Typical heat exchangers are 50-60% efficient in transferring heat between one side and the other. With no exchanger between the tank and collectors, the drain back system transfers 100% of the collector heat to the tank.
4) It is the most durable. Glycols deteriorate over time producing acids that eat piping. Pressurized glycol systems have up to 30% shorter equipment life than drain back systems.
5) With fewer parts, no exchanger, and no chemicals degradation, drain back systems are as trouble-free as possible
6) Trouble-free translates into no regular maintenance, just an occasional check up.

So how exactly do drain back solar hot water systems operate? There are two temperature sensors that control a solar system. One is the Hi-temp sensor on the outlet of the collectors. The other is the Lo-temp sensor on the coldest part of the tank.

In the morning when the solar collector temperature rises to about 18oF hotter than the tank temperature, the controller turns the collector pump ON. Water is pumped from the bottom of the tank (the coldest part) through the collectors, picking up heat as it goes. The warmed water spills down the return line into the drain back tank. This process goes on as long as the collectors are at least 5oF hotter than the tank, heating the tank continually. At the end of the day when the difference falls below 5oF, the controller turns the pump off and all the water drains from the collectors back into the tank.

Whenever someone uses hot water in the home, cold water goes through a copper coil heat exchanger in the solar tank and then into the regular water heater. The solar tank preheats the water and the regular water heater finishes raising it to the final temperature. The warmer the water is coming into the water heater, the less heat it must add. It is important to note that potable water never mixes with the water inside the solar hot water tank.

Solar heats water for dishwashing, clothes washing, bathing, spa, hot tub, pool, etc., which is referred to as domestic hot water, or DHW for short. Properly designed solar hot water systems can supply 30-60% of the year round hot water needs of a family.

Benjamin T. Gravely, PhD began his career in the solar industry in 1977 with the establishment of Gravely Research Corporation. GRC pursued various inventions in solar energy, two of which were granted federal patents. Three years later Ben founded Astron Technologies, Inc. to manufacture and distribute products developed by GRC. Since then, more than fifteen hundred of Ben's solar hot water systems have been installed for residential and commercial applications across the US and over seas.

Article Source:

This article has been viewed 418 times.

Rate Article
Rating: 0 / 5 stars - 0 vote(s).

Article Comments
There are no comments for this article.

Leave A Reply
 Your Name
 Your Email Address [will not be published]
 Your Website [optional]
 What is eight + five? [tell us you're human]
Notify me of followup comments via email

Related Articles

Copyright © 2020 by All rights reserved.

Terms of Service | Privacy Policy | Contact Us | Submit Article | Editorial